Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A non-intrusive data-driven ROM framework for hemodynamics problems (2010.08139v2)

Published 15 Oct 2020 in math.NA and cs.NA

Abstract: Reduced order modeling (ROM) techniques are numerical methods that approximate the solution of parametric partial differential equation (PDE) by properly combining the high-fidelity solutions of the problem obtained for several configurations, i.e. for several properly chosen values of the physical/geometrical parameters characterizing the problem. In this contribution, we propose an efficient non-intrusive data-driven framework involving ROM techniques in computational fluid dynamics (CFD) for hemodynamics applications. By starting from a database of high-fidelity solutions related to a certain values of the parameters, we apply the proper orthogonal decomposition with interpolation (PODI) and then reconstruct the variables of interest for new values of the parameters, i.e. different values from the ones included in the database. Furthermore, we present a preliminary web application through which one can run the ROM with a very user-friendly approach, without the need of having expertise in the numerical analysis and scientific computing field. The case study we have chosen to test the efficiency of our algorithm is represented by the aortic blood flow pattern in presence of a Left Ventricular Assist Device (LVAD) when varying the pump flow rate.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube