Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Pinball-OCSVM for early-stage COVID-19 diagnosis with limited posteroanterior chest X-ray images (2010.08115v2)

Published 16 Oct 2020 in eess.IV, cs.CV, and cs.LG

Abstract: The infection of respiratory coronavirus disease 2019 (COVID-19) starts with the upper respiratory tract and as the virus grows, the infection can progress to lungs and develop pneumonia. The conventional way of COVID-19 diagnosis is reverse transcription polymerase chain reaction (RT-PCR), which is less sensitive during early stages; especially if the patient is asymptomatic, which may further cause more severe pneumonia. In this context, several deep learning models have been proposed to identify pulmonary infections using publicly available chest X-ray (CXR) image datasets for early diagnosis, better treatment and quick cure. In these datasets, presence of less number of COVID-19 positive samples compared to other classes (normal, pneumonia and Tuberculosis) raises the challenge for unbiased learning of deep learning models. All deep learning models opted class balancing techniques to solve this issue; which however should be avoided in any medical diagnosis process. Moreover, the deep learning models are also data hungry and need massive computation resources. Therefore for quicker diagnosis, this research proposes a novel pinball loss function based one-class support vector machine (PB-OCSVM), that can work in presence of limited COVID-19 positive CXR samples with objectives to maximize the learning efficiency and to minimize the false predictions. The performance of the proposed model is compared with conventional OCSVM and existing deep learning models, and the experimental results prove that the proposed model outperformed over state-of-the-art methods. To validate the robustness of the proposed model, experiments are also performed with noisy CXR images and UCI benchmark datasets.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.