Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

MAST: Multimodal Abstractive Summarization with Trimodal Hierarchical Attention (2010.08021v1)

Published 15 Oct 2020 in cs.CL, cs.CV, cs.LG, and cs.MM

Abstract: This paper presents MAST, a new model for Multimodal Abstractive Text Summarization that utilizes information from all three modalities -- text, audio and video -- in a multimodal video. Prior work on multimodal abstractive text summarization only utilized information from the text and video modalities. We examine the usefulness and challenges of deriving information from the audio modality and present a sequence-to-sequence trimodal hierarchical attention-based model that overcomes these challenges by letting the model pay more attention to the text modality. MAST outperforms the current state of the art model (video-text) by 2.51 points in terms of Content F1 score and 1.00 points in terms of Rouge-L score on the How2 dataset for multimodal language understanding.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.