Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

ALPaCA vs. GP-based Prior Learning: A Comparison between two Bayesian Meta-Learning Algorithms (2010.07994v1)

Published 15 Oct 2020 in cs.LG

Abstract: Meta-learning or few-shot learning, has been successfully applied in a wide range of domains from computer vision to reinforcement learning. Among the many frameworks proposed for meta-learning, bayesian methods are particularly favoured when accurate and calibrated uncertainty estimate is required. In this paper, we investigate the similarities and disparities among two recently published bayesian meta-learning methods: ALPaCA (Harrison et al. [2018]) and PACOH (Rothfuss et al. [2020]). We provide theoretical analysis as well as empirical benchmarks across synthetic and real-world dataset. While ALPaCA holds advantage in computation time by the usage of a linear kernel, general GP-based methods provide much more flexibility and achieves better result across datasets when using a common kernel such as SE (Squared Exponential) kernel. The influence of different loss function choice is also discussed.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)