Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Generalizing Universal Adversarial Attacks Beyond Additive Perturbations (2010.07788v2)

Published 15 Oct 2020 in cs.CV, cs.CR, and cs.LG

Abstract: The previous study has shown that universal adversarial attacks can fool deep neural networks over a large set of input images with a single human-invisible perturbation. However, current methods for universal adversarial attacks are based on additive perturbation, which cause misclassification when the perturbation is directly added to the input images. In this paper, for the first time, we show that a universal adversarial attack can also be achieved via non-additive perturbation (e.g., spatial transformation). More importantly, to unify both additive and non-additive perturbations, we propose a novel unified yet flexible framework for universal adversarial attacks, called GUAP, which is able to initiate attacks by additive perturbation, non-additive perturbation, or the combination of both. Extensive experiments are conducted on CIFAR-10 and ImageNet datasets with six deep neural network models including GoogleLeNet, VGG16/19, ResNet101/152, and DenseNet121. The empirical experiments demonstrate that GUAP can obtain up to 90.9% and 99.24% successful attack rates on CIFAR-10 and ImageNet datasets, leading to over 15% and 19% improvements respectively than current state-of-the-art universal adversarial attacks. The code for reproducing the experiments in this paper is available at https://github.com/TrustAI/GUAP.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.