Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Integrating Coarse Granularity Part-level Features with Supervised Global-level Features for Person Re-identification (2010.07675v1)

Published 15 Oct 2020 in cs.CV

Abstract: Holistic person re-identification (Re-ID) and partial person re-identification have achieved great progress respectively in recent years. However, scenarios in reality often include both holistic and partial pedestrian images, which makes single holistic or partial person Re-ID hard to work. In this paper, we propose a robust coarse granularity part-level person Re-ID network (CGPN), which not only extracts robust regional level body features, but also integrates supervised global features for both holistic and partial person images. CGPN gains two-fold benefit toward higher accuracy for person Re-ID. On one hand, CGPN learns to extract effective body part features for both holistic and partial person images. On the other hand, compared with extracting global features directly by backbone network, CGPN learns to extract more accurate global features with a supervision strategy. The single model trained on three Re-ID datasets including Market-1501, DukeMTMC-reID and CUHK03 achieves state-of-the-art performances and outperforms any existing approaches. Especially on CUHK03, which is the most challenging dataset for person Re-ID, in single query mode, we obtain a top result of Rank-1/mAP=87.1\%/83.6\% with this method without re-ranking, outperforming the current best method by +7.0\%/+6.7\%.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.