Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Inducing Alignment Structure with Gated Graph Attention Networks for Sentence Matching (2010.07668v2)

Published 15 Oct 2020 in cs.CL and cs.AI

Abstract: Sentence matching is a fundamental task of natural language processing with various applications. Most recent approaches adopt attention-based neural models to build word- or phrase-level alignment between two sentences. However, these models usually ignore the inherent structure within the sentences and fail to consider various dependency relationships among text units. To address these issues, this paper proposes a graph-based approach for sentence matching. First, we represent a sentence pair as a graph with several carefully design strategies. We then employ a novel gated graph attention network to encode the constructed graph for sentence matching. Experimental results demonstrate that our method substantially achieves state-of-the-art performance on two datasets across tasks of natural language and paraphrase identification. Further discussions show that our model can learn meaningful graph structure, indicating its superiority on improved interpretability.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.