Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fully Unsupervised Person Re-identification viaSelective Contrastive Learning (2010.07608v2)

Published 15 Oct 2020 in cs.CV

Abstract: Person re-identification (ReID) aims at searching the same identity person among images captured by various cameras. Unsupervised person ReID attracts a lot of attention recently, due to it works without intensive manual annotation and thus shows great potential of adapting to new conditions. Representation learning plays a critical role in unsupervised person ReID. In this work, we propose a novel selective contrastive learning framework for unsupervised feature learning. Specifically, different from traditional contrastive learning strategies, we propose to use multiple positives and adaptively sampled negatives for defining the contrastive loss, enabling to learn a feature embedding model with stronger identity discriminative representation. Moreover, we propose to jointly leverage global and local features to construct three dynamic dictionaries, among which the global and local memory banks are used for pairwise similarity computation and the mixture memory bank are used for contrastive loss definition. Experimental results demonstrate the superiority of our method in unsupervised person ReID compared with the state-of-the-arts.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.