Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning Better Representation for Tables by Self-Supervised Tasks (2010.07606v3)

Published 15 Oct 2020 in cs.CL

Abstract: Table-to-text generation aims at automatically generating natural text to help people to conveniently obtain the important information in tables. Although neural models for table-to-text have achieved remarkable progress, some problems still overlooked. The first is that the values recorded in many tables are mostly numbers in practice. The existing approaches do not do special treatment for these, and still regard these as words in natural language text. Secondly, the target texts in training dataset may contain redundant information or facts do not exist in the input tables. These may give wrong supervision signals to some methods based on content selection and planning and auxiliary supervision. To solve these problems, we propose two self-supervised tasks, Number Ordering and Significance Ordering, to help to learn better table representation. The former works on the column dimension to help to incorporate the size property of numbers into table representation. The latter acts on row dimension and help to learn a significance-aware table representation. We test our methods on the widely used dataset ROTOWIRE which consists of NBA game statistic and related news. The experimental results demonstrate that the model trained together with these two self-supervised tasks can generate text that contains more salient and well-organized facts, even without modeling context selection and planning. And we achieve the state-of-the-art performance on automatic metrics.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.