Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Unsupervised Video Anomaly Detection via Normalizing Flows with Implicit Latent Features (2010.07524v3)

Published 15 Oct 2020 in cs.CV

Abstract: In contemporary society, surveillance anomaly detection, i.e., spotting anomalous events such as crimes or accidents in surveillance videos, is a critical task. As anomalies occur rarely, most training data consists of unlabeled videos without anomalous events, which makes the task challenging. Most existing methods use an autoencoder (AE) to learn to reconstruct normal videos; they then detect anomalies based on their failure to reconstruct the appearance of abnormal scenes. However, because anomalies are distinguished by appearance as well as motion, many previous approaches have explicitly separated appearance and motion information-for example, using a pre-trained optical flow model. This explicit separation restricts reciprocal representation capabilities between two types of information. In contrast, we propose an implicit two-path AE (ITAE), a structure in which two encoders implicitly model appearance and motion features, along with a single decoder that combines them to learn normal video patterns. For the complex distribution of normal scenes, we suggest normal density estimation of ITAE features through normalizing flow (NF)-based generative models to learn the tractable likelihoods and identify anomalies using out of distribution detection. NF models intensify ITAE performance by learning normality through implicitly learned features. Finally, we demonstrate the effectiveness of ITAE and its feature distribution modeling on six benchmarks, including databases that contain various anomalies in real-world scenarios.

Citations (77)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.