Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Bayesian Spatio-Temporal Graph Convolutional Network for Traffic Forecasting (2010.07498v1)

Published 15 Oct 2020 in cs.LG and cs.GR

Abstract: In traffic forecasting, graph convolutional networks (GCNs), which model traffic flows as spatio-temporal graphs, have achieved remarkable performance. However, existing GCN-based methods heuristically define the graph structure as the physical topology of the road network, ignoring potential dependence of the graph structure over traffic data. And the defined graph structure is deterministic, which lacks investigation of uncertainty. In this paper, we propose a Bayesian Spatio-Temporal Graph Convolutional Network (BSTGCN) for traffic prediction. The graph structure in our network is learned from the physical topology of the road network and traffic data in an end-to-end manner, which discovers a more accurate description of the relationship among traffic flows. Moreover, a parametric generative model is proposed to represent the graph structure, which enhances the generalization capability of GCNs. We verify the effectiveness of our method on two real-world datasets, and the experimental results demonstrate that BSTGCN attains superior performance compared with state-of-the-art methods.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (3)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube