Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Spatio-Temporal Graph Convolutional Network for Traffic Forecasting (2010.07498v1)

Published 15 Oct 2020 in cs.LG and cs.GR

Abstract: In traffic forecasting, graph convolutional networks (GCNs), which model traffic flows as spatio-temporal graphs, have achieved remarkable performance. However, existing GCN-based methods heuristically define the graph structure as the physical topology of the road network, ignoring potential dependence of the graph structure over traffic data. And the defined graph structure is deterministic, which lacks investigation of uncertainty. In this paper, we propose a Bayesian Spatio-Temporal Graph Convolutional Network (BSTGCN) for traffic prediction. The graph structure in our network is learned from the physical topology of the road network and traffic data in an end-to-end manner, which discovers a more accurate description of the relationship among traffic flows. Moreover, a parametric generative model is proposed to represent the graph structure, which enhances the generalization capability of GCNs. We verify the effectiveness of our method on two real-world datasets, and the experimental results demonstrate that BSTGCN attains superior performance compared with state-of-the-art methods.

Citations (9)

Summary

We haven't generated a summary for this paper yet.