Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Positioning yourself in the maze of Neural Text Generation: A Task-Agnostic Survey (2010.07279v2)

Published 14 Oct 2020 in cs.CL

Abstract: Neural text generation metamorphosed into several critical natural language applications ranging from text completion to free form narrative generation. In order to progress research in text generation, it is critical to absorb the existing research works and position ourselves in this massively growing field. Specifically, this paper surveys the fundamental components of modeling approaches relaying task agnostic impacts across various generation tasks such as storytelling, summarization, translation etc., In this context, we present an abstraction of the imperative techniques with respect to learning paradigms, pretraining, modeling approaches, decoding and the key challenges outstanding in the field in each of them. Thereby, we deliver a one-stop destination for researchers in the field to facilitate a perspective on where to situate their work and how it impacts other closely related generation tasks.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.