Papers
Topics
Authors
Recent
2000 character limit reached

Learning Improvised Chatbots from Adversarial Modifications of Natural Language Feedback (2010.07261v2)

Published 14 Oct 2020 in cs.CL, cs.AI, and cs.LG

Abstract: The ubiquitous nature of chatbots and their interaction with users generate an enormous amount of data. Can we improve chatbots using this data? A self-feeding chatbot improves itself by asking natural language feedback when a user is dissatisfied with its response and uses this feedback as an additional training sample. However, user feedback in most cases contains extraneous sequences hindering their usefulness as a training sample. In this work, we propose a generative adversarial model that converts noisy feedback into a plausible natural response in a conversation. The generator's goal is to convert the feedback into a response that answers the user's previous utterance and to fool the discriminator which distinguishes feedback from natural responses. We show that augmenting original training data with these modified feedback responses improves the original chatbot performance from 69.94% to 75.96% in ranking correct responses on the Personachat dataset, a large improvement given that the original model is already trained on 131k samples.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.