Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Asymptotic Randomised Control with applications to bandits (2010.07252v2)

Published 14 Oct 2020 in math.OC and stat.ML

Abstract: We consider a general multi-armed bandit problem with correlated (and simple contextual and restless) elements, as a relaxed control problem. By introducing an entropy regularisation, we obtain a smooth asymptotic approximation to the value function. This yields a novel semi-index approximation of the optimal decision process. This semi-index can be interpreted as explicitly balancing an exploration-exploitation trade-off as in the optimistic (UCB) principle where the learning premium explicitly describes asymmetry of information available in the environment and non-linearity in the reward function. Performance of the resulting Asymptotic Randomised Control (ARC) algorithm compares favourably well with other approaches to correlated multi-armed bandits.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.