Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Graph Based Gaussian Processes on Restricted Domains (2010.07242v3)

Published 14 Oct 2020 in stat.ME, math.ST, stat.ML, and stat.TH

Abstract: In nonparametric regression, it is common for the inputs to fall in a restricted subset of Euclidean space. Typical kernel-based methods that do not take into account the intrinsic geometry of the domain across which observations are collected may produce sub-optimal results. In this article, we focus on solving this problem in the context of Gaussian process (GP) models, proposing a new class of Graph Laplacian based GPs (GL-GPs), which learn a covariance that respects the geometry of the input domain. As the heat kernel is intractable computationally, we approximate the covariance using finitely-many eigenpairs of the Graph Laplacian (GL). The GL is constructed from a kernel which depends only on the Euclidean coordinates of the inputs. Hence, we can benefit from the full knowledge about the kernel to extend the covariance structure to newly arriving samples by a Nystr\"{o}m type extension. We provide substantial theoretical support for the GL-GP methodology, and illustrate performance gains in various applications.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube