Papers
Topics
Authors
Recent
2000 character limit reached

Self-avoiding walks and multiple context-free languages (2010.06974v2)

Published 14 Oct 2020 in math.CO, cs.FL, and math.GR

Abstract: Let $G$ be a quasi-transitive, locally finite, connected graph rooted at a vertex $o$, and let $c_n(o)$ be the number of self-avoiding walks of length $n$ on $G$ starting at $o$. We show that if $G$ has only thin ends, then the generating function $F_{\mathrm{SAW},o}(z)=\sum_{n \geq 0} c_n(o) zn$ is an algebraic function. In particular, the connective constant of such a graph is an algebraic number. If $G$ is deterministically edge labelled, that is, every (directed) edge carries a label such that any two edges starting at the same vertex have different labels, then the set of all words which can be read along the edges of self-avoiding walks starting at $o$ forms a language denoted by $L_{\mathrm{SAW},o}$. Assume that the group of label-preserving graph automorphisms acts quasi-transitively. We show that $L_{\mathrm{SAW},o}$ is a $k$-multiple context-free language if and only if the size of all ends of $G$ is at most $2k$. Applied to Cayley graphs of finitely generated groups this says that $L_{\mathrm{SAW},o}$ is multiple context-free if and only if the group is virtually free.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.