Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Continuous window functions for NFFT (2010.06894v2)

Published 14 Oct 2020 in math.NA and cs.NA

Abstract: In this paper, we study the error behavior of the nonequispaced fast Fourier transform (NFFT). This approximate algorithm is mainly based on the convenient choice of a compactly supported window function. Here we consider the continuous Kaiser--Bessel, continuous $\exp$-type, $\sinh$-type, and continuous $\cosh$-type window functions with the same support and same shape parameter. We present novel explicit error estimates for NFFT with such a window function and derive rules for the optimal choice of the parameters involved in NFFT. The error constant of a window function depends mainly on the oversampling factor and the truncation parameter. For the considered continuous window functions, the error constants have an exponential decay with respect to the truncation parameter.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.