Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Analogical and Relational Reasoning with Spiking Neural Networks (2010.06746v2)

Published 14 Oct 2020 in cs.NE, cs.AI, and cs.LG

Abstract: Raven's Progressive Matrices have been widely used for measuring abstract reasoning and intelligence in humans. However for artificial learning systems, abstract reasoning remains a challenging problem. In this paper we investigate how neural networks augmented with biologically inspired spiking modules gain a significant advantage in solving this problem. To illustrate this, we first investigate the performance of our networks with supervised learning, then with unsupervised learning. Experiments on the RAVEN dataset show that the overall accuracy of our supervised networks surpass human-level performance, while our unsupervised networks significantly outperform existing unsupervised methods. Finally, our results from both supervised and unsupervised learning illustrate that, unlike their non-augmented counterparts, networks with spiking modules are able to extract and encode temporal features without any explicit instruction, do not heavily rely on training data, and generalise more readily to new problems. In summary, the results reported here indicate that artificial neural networks with spiking modules are well suited to solving abstract reasoning.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.