Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Low-Degree Hardness of Maximum Independent Set (2010.06563v2)

Published 13 Oct 2020 in cs.CC, cs.DS, math.PR, and stat.ML

Abstract: We study the algorithmic task of finding a large independent set in a sparse Erd\H{o}s-R\'{e}nyi random graph with $n$ vertices and average degree $d$. The maximum independent set is known to have size $(2 \log d / d)n$ in the double limit $n \to \infty$ followed by $d \to \infty$, but the best known polynomial-time algorithms can only find an independent set of half-optimal size $(\log d / d)n$. We show that the class of low-degree polynomial algorithms can find independent sets of half-optimal size but no larger, improving upon a result of Gamarnik, Jagannath, and the author. This generalizes earlier work by Rahman and Vir\'ag, which proved the analogous result for the weaker class of local algorithms.

Citations (36)

Summary

We haven't generated a summary for this paper yet.