Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Optimal Low-Degree Hardness of Maximum Independent Set (2010.06563v2)

Published 13 Oct 2020 in cs.CC, cs.DS, math.PR, and stat.ML

Abstract: We study the algorithmic task of finding a large independent set in a sparse Erd\H{o}s-R\'{e}nyi random graph with $n$ vertices and average degree $d$. The maximum independent set is known to have size $(2 \log d / d)n$ in the double limit $n \to \infty$ followed by $d \to \infty$, but the best known polynomial-time algorithms can only find an independent set of half-optimal size $(\log d / d)n$. We show that the class of low-degree polynomial algorithms can find independent sets of half-optimal size but no larger, improving upon a result of Gamarnik, Jagannath, and the author. This generalizes earlier work by Rahman and Vir\'ag, which proved the analogous result for the weaker class of local algorithms.

Citations (36)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)