Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Real-Time Deep Learning Approach to Visual Servo Control and Grasp Detection for Autonomous Robotic Manipulation (2010.06544v2)

Published 13 Oct 2020 in cs.RO

Abstract: In order to explore robotic grasping in unstructured and dynamic environments, this work addresses the visual perception phase involved in the task. This phase involves the processing of visual data to obtain the location of the object to be grasped, its pose and the points at which the robots grippers must make contact to ensure a stable grasp. For this, the Cornell Grasping dataset is used to train a convolutional neural network that, having an image of the robots workspace, with a certain object, is able to predict a grasp rectangle that symbolizes the position, orientation and opening of the robots grippers before its closing. In addition to this network, which runs in real-time, another one is designed to deal with situations in which the object moves in the environment. Therefore, the second network is trained to perform a visual servo control, ensuring that the object remains in the robots field of view. This network predicts the proportional values of the linear and angular velocities that the camera must have so that the object is always in the image processed by the grasp network. The dataset used for training was automatically generated by a Kinova Gen3 manipulator. The robot is also used to evaluate the applicability in real-time and obtain practical results from the designed algorithms. Moreover, the offline results obtained through validation sets are also analyzed and discussed regarding their efficiency and processing speed. The developed controller was able to achieve a millimeter accuracy in the final position considering a target object seen for the first time. To the best of our knowledge, we have not found in the literature other works that achieve such precision with a controller learned from scratch. Thus, this work presents a new system for autonomous robotic manipulation with high processing speed and the ability to generalize to several different objects.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.