Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Land Cover Semantic Segmentation Using ResUNet (2010.06285v1)

Published 13 Oct 2020 in cs.CV and cs.LG

Abstract: In this paper we present our work on developing an automated system for land cover classification. This system takes a multiband satellite image of an area as input and outputs the land cover map of the area at the same resolution as the input. For this purpose convolutional machine learning models were trained in the task of predicting the land cover semantic segmentation of satellite images. This is a case of supervised learning. The land cover label data were taken from the CORINE Land Cover inventory and the satellite images were taken from the Copernicus hub. As for the model, U-Net architecture variations were applied. Our area of interest are the Ionian islands (Greece). We created a dataset from scratch covering this particular area. In addition, transfer learning from the BigEarthNet dataset [1] was performed. In [1] simple classification of satellite images into the classes of CLC is performed but not segmentation as we do. However, their models have been trained into a dataset much bigger than ours, so we applied transfer learning using their pretrained models as the first part of out network, utilizing the ability these networks have developed to extract useful features from the satellite images (we transferred a pretrained ResNet50 into a U-Res-Net). Apart from transfer learning other techniques were applied in order to overcome the limitations set by the small size of our area of interest. We used data augmentation (cutting images into overlapping patches, applying random transformations such as rotations and flips) and cross validation. The results are tested on the 3 CLC class hierarchy levels and a comparative study is made on the results of different approaches.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube