Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Neighborhood Preserving Kernels for Attributed Graphs (2010.06261v1)

Published 13 Oct 2020 in cs.AI and cs.LG

Abstract: We describe the design of a reproducing kernel suitable for attributed graphs, in which the similarity between the two graphs is defined based on the neighborhood information of the graph nodes with the aid of a product graph formulation. We represent the proposed kernel as the weighted sum of two other kernels of which one is an R-convolution kernel that processes the attribute information of the graph and the other is an optimal assignment kernel that processes label information. They are formulated in such a way that the edges processed as part of the kernel computation have the same neighborhood properties and hence the kernel proposed makes a well-defined correspondence between regions processed in graphs. These concepts are also extended to the case of the shortest paths. We identified the state-of-the-art kernels that can be mapped to such a neighborhood preserving framework. We found that the kernel value of the argument graphs in each iteration of the Weisfeiler-Lehman color refinement algorithm can be obtained recursively from the product graph formulated in our method. By incorporating the proposed kernel on support vector machines we analyzed the real-world data sets and it has shown superior performance in comparison with that of the other state-of-the-art graph kernels.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.