Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Real-Time Detection of Simulator Sickness in Virtual Reality Games Based on Players' Psychophysiological Data during Gameplay (2010.06152v1)

Published 13 Oct 2020 in cs.HC

Abstract: Virtual Reality (VR) technology has been proliferating in the last decade, especially in the last few years. However, Simulator Sickness (SS) still represents a significant problem for its wider adoption. Currently, the most common way to detect SS is using the Simulator Sickness Questionnaire (SSQ). SSQ is a subjective measurement and is inadequate for real-time applications such as VR games. This research aims to investigate how to use machine learning techniques to detect SS based on in-game characters' and users' physiological data during gameplay in VR games. To achieve this, we designed an experiment to collect such data with three types of games. We trained a Long Short-Term Memory neural network with the dataset eye-tracking and character movement data to detect SS in real-time. Our results indicate that, in VR games, our model is an accurate and efficient way to detect SS in real-time.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.