Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Incorporating BERT into Parallel Sequence Decoding with Adapters (2010.06138v1)

Published 13 Oct 2020 in cs.CL

Abstract: While large scale pre-trained LLMs such as BERT have achieved great success on various natural language understanding tasks, how to efficiently and effectively incorporate them into sequence-to-sequence models and the corresponding text generation tasks remains a non-trivial problem. In this paper, we propose to address this problem by taking two different BERT models as the encoder and decoder respectively, and fine-tuning them by introducing simple and lightweight adapter modules, which are inserted between BERT layers and tuned on the task-specific dataset. In this way, we obtain a flexible and efficient model which is able to jointly leverage the information contained in the source-side and target-side BERT models, while bypassing the catastrophic forgetting problem. Each component in the framework can be considered as a plug-in unit, making the framework flexible and task agnostic. Our framework is based on a parallel sequence decoding algorithm named Mask-Predict considering the bi-directional and conditional independent nature of BERT, and can be adapted to traditional autoregressive decoding easily. We conduct extensive experiments on neural machine translation tasks where the proposed method consistently outperforms autoregressive baselines while reducing the inference latency by half, and achieves $36.49$/$33.57$ BLEU scores on IWSLT14 German-English/WMT14 German-English translation. When adapted to autoregressive decoding, the proposed method achieves $30.60$/$43.56$ BLEU scores on WMT14 English-German/English-French translation, on par with the state-of-the-art baseline models.

Citations (68)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube