Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Learning to Attack with Fewer Pixels: A Probabilistic Post-hoc Framework for Refining Arbitrary Dense Adversarial Attacks (2010.06131v2)

Published 13 Oct 2020 in cs.CV, cs.CR, and cs.LG

Abstract: Deep neural network image classifiers are reported to be susceptible to adversarial evasion attacks, which use carefully crafted images created to mislead a classifier. Many adversarial attacks belong to the category of dense attacks, which generate adversarial examples by perturbing all the pixels of a natural image. To generate sparse perturbations, sparse attacks have been recently developed, which are usually independent attacks derived by modifying a dense attack's algorithm with sparsity regularisations, resulting in reduced attack efficiency. In this paper, we aim to tackle this task from a different perspective. We select the most effective perturbations from the ones generated from a dense attack, based on the fact we find that a considerable amount of the perturbations on an image generated by dense attacks may contribute little to attacking a classifier. Accordingly, we propose a probabilistic post-hoc framework that refines given dense attacks by significantly reducing the number of perturbed pixels but keeping their attack power, trained with mutual information maximisation. Given an arbitrary dense attack, the proposed model enjoys appealing compatibility for making its adversarial images more realistic and less detectable with fewer perturbations. Moreover, our framework performs adversarial attacks much faster than existing sparse attacks.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.