Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Gradient Descent Ascent for Minimax Problems on Riemannian Manifolds (2010.06097v5)

Published 13 Oct 2020 in cs.LG, cs.CV, and math.OC

Abstract: In the paper, we study a class of useful minimax problems on Riemanian manifolds and propose a class of effective Riemanian gradient-based methods to solve these minimax problems. Specifically, we propose an effective Riemannian gradient descent ascent (RGDA) algorithm for the deterministic minimax optimization. Moreover, we prove that our RGDA has a sample complexity of $O(\kappa2\epsilon{-2})$ for finding an $\epsilon$-stationary solution of the Geodesically-Nonconvex Strongly-Concave (GNSC) minimax problems, where $\kappa$ denotes the condition number. At the same time, we present an effective Riemannian stochastic gradient descent ascent (RSGDA) algorithm for the stochastic minimax optimization, which has a sample complexity of $O(\kappa4\epsilon{-4})$ for finding an $\epsilon$-stationary solution. To further reduce the sample complexity, we propose an accelerated Riemannian stochastic gradient descent ascent (Acc-RSGDA) algorithm based on the momentum-based variance-reduced technique. We prove that our Acc-RSGDA algorithm achieves a lower sample complexity of $\tilde{O}(\kappa{4}\epsilon{-3})$ in searching for an $\epsilon$-stationary solution of the GNSC minimax problems. Extensive experimental results on the robust distributional optimization and robust Deep Neural Networks (DNNs) training over Stiefel manifold demonstrate efficiency of our algorithms.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.