Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Look It Up: Bilingual Dictionaries Improve Neural Machine Translation (2010.05997v2)

Published 12 Oct 2020 in cs.CL, cs.AI, and cs.LG

Abstract: Despite advances in neural machine translation (NMT) quality, rare words continue to be problematic. For humans, the solution to the rare-word problem has long been dictionaries, but dictionaries cannot be straightforwardly incorporated into NMT. In this paper, we describe a new method for "attaching" dictionary definitions to rare words so that the network can learn the best way to use them. We demonstrate improvements of up to 1.8 BLEU using bilingual dictionaries.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.