Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Is Plug-in Solver Sample-Efficient for Feature-based Reinforcement Learning? (2010.05673v2)

Published 12 Oct 2020 in cs.LG

Abstract: It is believed that a model-based approach for reinforcement learning (RL) is the key to reduce sample complexity. However, the understanding of the sample optimality of model-based RL is still largely missing, even for the linear case. This work considers sample complexity of finding an $\epsilon$-optimal policy in a Markov decision process (MDP) that admits a linear additive feature representation, given only access to a generative model. We solve this problem via a plug-in solver approach, which builds an empirical model and plans in this empirical model via an arbitrary plug-in solver. We prove that under the anchor-state assumption, which implies implicit non-negativity in the feature space, the minimax sample complexity of finding an $\epsilon$-optimal policy in a $\gamma$-discounted MDP is $O(K/(1-\gamma)3\epsilon2)$, which only depends on the dimensionality $K$ of the feature space and has no dependence on the state or action space. We further extend our results to a relaxed setting where anchor-states may not exist and show that a plug-in approach can be sample efficient as well, providing a flexible approach to design model-based algorithms for RL.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.