Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Incomplete Directed Perfect Phylogeny in Linear Time (2010.05644v1)

Published 12 Oct 2020 in cs.DS

Abstract: Reconstructing the evolutionary history of a set of species is a central task in computational biology. In real data, it is often the case that some information is missing: the Incomplete Directed Perfect Phylogeny (IDPP) problem asks, given a collection of species described by a set of binary characters with some unknown states, to complete the missing states in such a way that the result can be explained with a perfect directed phylogeny. Pe'er et al. proposed a solution that takes $\tilde{O}(nm)$ time for $n$ species and $m$ characters. Their algorithm relies on pre-existing dynamic connectivity data structures: a computational study recently conducted by Fern{\'a}ndez-Baca and Liu showed that, in this context, complex data structures perform worse than simpler ones with worse asymptotic bounds. This gives us the motivation to look into the particular properties of the dynamic connectivity problem in this setting, so as to avoid the use of sophisticated data structures as a blackbox. Not only are we successful in doing so, and give a much simpler $\tilde{O}(nm)$-time algorithm for the IDPP problem; our insights into the specific structure of the problem lead to an asymptotically faster algorithm, that runs in optimal $O(nm)$ time.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube