Papers
Topics
Authors
Recent
2000 character limit reached

Spacetime Autoencoders Using Local Causal States (2010.05451v1)

Published 12 Oct 2020 in cs.LG, nlin.AO, and physics.comp-ph

Abstract: Local causal states are latent representations that capture organized pattern and structure in complex spatiotemporal systems. We expand their functionality, framing them as spacetime autoencoders. Previously, they were only considered as maps from observable spacetime fields to latent local causal state fields. Here, we show that there is a stochastic decoding that maps back from the latent fields to observable fields. Furthermore, their Markovian properties define a stochastic dynamic in the latent space. Combined with stochastic decoding, this gives a new method for forecasting spacetime fields.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.