Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Early Abandoning PrunedDTW and its application to similarity search (2010.05371v1)

Published 11 Oct 2020 in cs.LG

Abstract: The Dynamic Time Warping ("DTW") distance is widely used in time series analysis, be it for classification, clustering or similarity search. However, its quadratic time complexity prevents it from scaling. Strategies, based on early abandoning DTW or skipping its computation altogether thanks to lower bounds, have been developed for certain use cases such as nearest neighbour search. But vectorization and approximation aside, no advance was made on DTW itself until recently with the introduction of PrunedDTW. This algorithm, able to prune unpromising alignments, was later fitted with early abandoning. We present a new version of PrunedDTW, "EAPrunedDTW", designed with early abandon in mind from the start, and able to early abandon faster than before. We show that EAPrunedDTW significantly improves the computation time of similarity search in the UCR Suite, and renders lower bounds dispensable.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.