Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Safe Reinforcement Learning with Natural Language Constraints (2010.05150v2)

Published 11 Oct 2020 in cs.CL, cs.AI, cs.LG, and cs.RO

Abstract: While safe reinforcement learning (RL) holds great promise for many practical applications like robotics or autonomous cars, current approaches require specifying constraints in mathematical form. Such specifications demand domain expertise, limiting the adoption of safe RL. In this paper, we propose learning to interpret natural language constraints for safe RL. To this end, we first introduce HazardWorld, a new multi-task benchmark that requires an agent to optimize reward while not violating constraints specified in free-form text. We then develop an agent with a modular architecture that can interpret and adhere to such textual constraints while learning new tasks. Our model consists of (1) a constraint interpreter that encodes textual constraints into spatial and temporal representations of forbidden states, and (2) a policy network that uses these representations to produce a policy achieving minimal constraint violations during training. Across different domains in HazardWorld, we show that our method achieves higher rewards (up to11x) and fewer constraint violations (by 1.8x) compared to existing approaches. However, in terms of absolute performance, HazardWorld still poses significant challenges for agents to learn efficiently, motivating the need for future work.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets