Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Recursive Markov Boundary-Based Approach to Causal Structure Learning (2010.04992v3)

Published 10 Oct 2020 in cs.LG, cs.AI, and stat.ML

Abstract: Constraint-based methods are one of the main approaches for causal structure learning that are particularly valued as they are asymptotically guaranteed to find a structure that is Markov equivalent to the causal graph of the system. On the other hand, they may require an exponentially large number of conditional independence (CI) tests in the number of variables of the system. In this paper, we propose a novel recursive constraint-based method for causal structure learning that significantly reduces the required number of CI tests compared to the existing literature. The idea of the proposed approach is to use Markov boundary information to identify a specific variable that can be removed from the set of variables without affecting the statistical dependencies among the other variables. Having identified such a variable, we discover its neighborhood, remove that variable from the set of variables, and recursively learn the causal structure over the remaining variables. We further provide a lower bound on the number of CI tests required by any constraint-based method. Comparing this lower bound to our achievable bound demonstrates the efficiency of the proposed approach. Our experimental results show that the proposed algorithm outperforms state-of-the-art both on synthetic and real-world structures.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.