Papers
Topics
Authors
Recent
2000 character limit reached

Cue-word Driven Neural Response Generation with a Shrinking Vocabulary

Published 10 Oct 2020 in cs.CL and cs.AI | (2010.04927v1)

Abstract: Open-domain response generation is the task of generating sensible and informative re-sponses to the source sentence. However, neural models tend to generate safe and mean-ingless responses. While cue-word introducing approaches encourage responses with concrete semantics and have shown tremendous potential, they still fail to explore di-verse responses during decoding. In this paper, we propose a novel but natural approach that can produce multiple cue-words during decoding, and then uses the produced cue-words to drive decoding and shrinks the decoding vocabulary. Thus the neural genera-tion model can explore the full space of responses and discover informative ones with efficiency. Experimental results show that our approach significantly outperforms several strong baseline models with much lower decoding complexity. Especially, our approach can converge to concrete semantics more efficiently during decoding.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.