Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Interpretable Neural Computation for Real-World Compositional Visual Question Answering (2010.04913v1)

Published 10 Oct 2020 in cs.CV

Abstract: There are two main lines of research on visual question answering (VQA): compositional model with explicit multi-hop reasoning, and monolithic network with implicit reasoning in the latent feature space. The former excels in interpretability and compositionality but fails on real-world images, while the latter usually achieves better performance due to model flexibility and parameter efficiency. We aim to combine the two to build an interpretable framework for real-world compositional VQA. In our framework, images and questions are disentangled into scene graphs and programs, and a symbolic program executor runs on them with full transparency to select the attention regions, which are then iteratively passed to a visual-linguistic pre-trained encoder to predict answers. Experiments conducted on the GQA benchmark demonstrate that our framework outperforms the compositional prior arts and achieves competitive accuracy among monolithic ones. With respect to the validity, plausibility and distribution metrics, our framework surpasses others by a considerable margin.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)