Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An energy, momentum and angular momentum conserving scheme for a regularization model of incompressible flow (2010.04615v2)

Published 9 Oct 2020 in math.NA and cs.NA

Abstract: We introduce a new regularization model for incompressible fluid flow, which is a regularization of the EMAC formulation of the Navier-Stokes equations (NSE) that we call EMAC-Reg. The EMAC (energy, momentum, and angular momentum conserving) formulation has proved to be a useful formulation because it conserves energy, momentum and angular momentum even when the divergence constraint is only weakly enforced. However it is still a NSE formulation and so cannot resolve higher Reynolds number flows without very fine meshes. By carefully introducing regularization into the EMAC formulation, we create a model more suitable for coarser mesh computations but that still conserves the same quantities as EMAC, i.e., energy, momentum, and angular momentum. We show that EMAC-Reg, when semi-discretized with a finite element spatial discretization is well-posed and optimally accurate. Numerical results are provided that show EMAC-Reg is a robust coarse mesh model.

Citations (3)

Summary

We haven't generated a summary for this paper yet.