Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Word Level Language Identification in English Telugu Code Mixed Data (2010.04482v1)

Published 9 Oct 2020 in cs.CL

Abstract: In a multilingual or sociolingual configuration Intra-sentential Code Switching (ICS) or Code Mixing (CM) is frequently observed nowadays. In the world, most of the people know more than one language. CM usage is especially apparent in social media platforms. Moreover, ICS is particularly significant in the context of technology, health, and law where conveying the upcoming developments are difficult in one's native language. In applications like dialog systems, machine translation, semantic parsing, shallow parsing, etc. CM and Code Switching pose serious challenges. To do any further advancement in code-mixed data, the necessary step is Language Identification. In this paper, we present a study of various models - Nave Bayes Classifier, Random Forest Classifier, Conditional Random Field (CRF), and Hidden Markov Model (HMM) for Language Identification in English - Telugu Code Mixed Data. Considering the paucity of resources in code mixed languages, we proposed the CRF model and HMM model for word level language identification. Our best performing system is CRF-based with an f1-score of 0.91.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.