Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Style Attuned Pre-training and Parameter Efficient Fine-tuning for Spoken Language Understanding (2010.04355v1)

Published 9 Oct 2020 in cs.CL, cs.AI, and cs.LG

Abstract: Neural models have yielded state-of-the-art results in deciphering spoken language understanding (SLU) problems; however, these models require a significant amount of domain-specific labeled examples for training, which is prohibitively expensive. While pre-trained LLMs like BERT have been shown to capture a massive amount of knowledge by learning from unlabeled corpora and solve SLU using fewer labeled examples for adaption, the encoding of knowledge is implicit and agnostic to downstream tasks. Such encoding results in model inefficiencies in parameter usage: an entirely new model is required for every domain. To address these challenges, we introduce a novel SLU framework, comprising a conversational language modeling (CLM) pre-training task and a light encoder architecture. The CLM pre-training enables networks to capture the representation of the language in conversation style with the presence of ASR errors. The light encoder architecture separates the shared pre-trained networks from the mappings of generally encoded knowledge to specific domains of SLU, allowing for the domain adaptation to be performed solely at the light encoder and thus increasing efficiency. With the framework, we match the performance of state-of-the-art SLU results on Alexa internal datasets and on two public ones (ATIS, SNIPS), adding only 4.4% parameters per task.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.