Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An ensemble learning approach for software semantic clone detection (2010.04336v1)

Published 9 Oct 2020 in cs.SE

Abstract: Code clone is a serious problem in software and has the potential to software defects, maintenance overhead, and licensing violations. Therefore, clone detection is important for reducing maintenance effort and improving code quality during software evolution. A variety of clone detection techniques have been proposed to identify similar code in software. However, few of them can efficiently detect semantic clones (functionally similar code without any syntactic resemblance). Recently, several deep learning based clone detectors are proposed to detect semantic clones. However, these approaches have high cost in data labelling and model training. In this paper, we propose a novel approach that leverages word embedding and ensemble learning techniques to detect semantic clones. Our evaluation on a commonly used clone benchmark, BigCloneBench, shows that our approach significantly improves the precision and recall of semantic clone detection, in comparison to a token-based clone detector, SourcererCC, and another deep learning based clone detector, CDLH.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube