Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Dissecting Hessian: Understanding Common Structure of Hessian in Neural Networks (2010.04261v6)

Published 8 Oct 2020 in cs.LG, cs.NE, and stat.ML

Abstract: Hessian captures important properties of the deep neural network loss landscape. Previous works have observed low rank structure in the Hessians of neural networks. In this paper, we propose a decoupling conjecture that decomposes the layer-wise Hessians of a network as the Kronecker product of two smaller matrices. We can analyze the properties of these smaller matrices and prove the structure of top eigenspace random 2-layer networks. The decoupling conjecture has several other interesting implications - top eigenspaces for different models have surprisingly high overlap, and top eigenvectors form low rank matrices when they are reshaped into the same shape as the corresponding weight matrix. All of these can be verified empirically for deeper networks. Finally, we use the structure of layer-wise Hessian to get better explicit generalization bounds for neural networks.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.