Papers
Topics
Authors
Recent
2000 character limit reached

Provable Fictitious Play for General Mean-Field Games (2010.04211v1)

Published 8 Oct 2020 in cs.LG and cs.GT

Abstract: We propose a reinforcement learning algorithm for stationary mean-field games, where the goal is to learn a pair of mean-field state and stationary policy that constitutes the Nash equilibrium. When viewing the mean-field state and the policy as two players, we propose a fictitious play algorithm which alternatively updates the mean-field state and the policy via gradient-descent and proximal policy optimization, respectively. Our algorithm is in stark contrast with previous literature which solves each single-agent reinforcement learning problem induced by the iterates mean-field states to the optimum. Furthermore, we prove that our fictitious play algorithm converges to the Nash equilibrium at a sublinear rate. To the best of our knowledge, this seems the first provably convergent single-loop reinforcement learning algorithm for mean-field games based on iterative updates of both mean-field state and policy.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.