Provable Fictitious Play for General Mean-Field Games (2010.04211v1)
Abstract: We propose a reinforcement learning algorithm for stationary mean-field games, where the goal is to learn a pair of mean-field state and stationary policy that constitutes the Nash equilibrium. When viewing the mean-field state and the policy as two players, we propose a fictitious play algorithm which alternatively updates the mean-field state and the policy via gradient-descent and proximal policy optimization, respectively. Our algorithm is in stark contrast with previous literature which solves each single-agent reinforcement learning problem induced by the iterates mean-field states to the optimum. Furthermore, we prove that our fictitious play algorithm converges to the Nash equilibrium at a sublinear rate. To the best of our knowledge, this seems the first provably convergent single-loop reinforcement learning algorithm for mean-field games based on iterative updates of both mean-field state and policy.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.