Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Emotion Invariant Speaker Embeddings for Speaker Identification with Emotional Speech (2010.03909v1)

Published 8 Oct 2020 in eess.AS and cs.SD

Abstract: Emotional state of a speaker is found to have significant effect in speech production, which can deviate speech from that arising from neutral state. This makes identifying speakers with different emotions a challenging task as generally the speaker models are trained using neutral speech. In this work, we propose to overcome this problem by creation of emotion invariant speaker embedding. We learn an extractor network that maps the test embeddings with different emotions obtained using i-vector based system to an emotion invariant space. The resultant test embeddings thus become emotion invariant and thereby compensate the mismatch between various emotional states. The studies are conducted using four different emotion classes from IEMOCAP database. We obtain an absolute improvement of 2.6% in accuracy for speaker identification studies using emotion invariant speaker embedding against average speaker model based framework with different emotions.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.