Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finding descending sequences through ill-founded linear orders (2010.03840v3)

Published 8 Oct 2020 in math.LO, cs.LO, and math.CO

Abstract: In this work we investigate the Weihrauch degree of the problem $\mathsf{DS}$ of finding an infinite descending sequence through a given ill-founded linear order, which is shared by the problem $\mathsf{BS}$ of finding a bad sequence through a given non-well quasi-order. We show that $\mathsf{DS}$, despite being hard to solve (it has computable inputs with no hyperarithmetic solution), is rather weak in terms of uniform computational strength. To make the latter precise, we introduce the notion of the deterministic part of a Weihrauch degree. We then generalize $\mathsf{DS}$ and $\mathsf{BS}$ by considering $\boldsymbol{\Gamma}$-presented orders, where $\boldsymbol{\Gamma}$ is a Borel pointclass or $\boldsymbol{\Delta}1_1$, $\boldsymbol{\Sigma}1_1$, $\boldsymbol{\Pi}1_1$. We study the obtained $\mathsf{DS}$-hierarchy and $\mathsf{BS}$-hierarchy of problems in comparison with the (effective) Baire hierarchy and show that they do not collapse at any finite level.

Citations (15)

Summary

We haven't generated a summary for this paper yet.