Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multivariate Temporal Autoencoder for Predictive Reconstruction of Deep Sequences (2010.03661v1)

Published 7 Oct 2020 in cs.LG

Abstract: Time series sequence prediction and modelling has proven to be a challenging endeavor in real world datasets. Two key issues are the multi-dimensionality of data and the interaction of independent dimensions forming a latent output signal, as well as the representation of multi-dimensional temporal data inside of a predictive model. This paper proposes a multi-branch deep neural network approach to tackling the aforementioned problems by modelling a latent state vector representation of data windows through the use of a recurrent autoencoder branch and subsequently feeding the trained latent vector representation into a predictor branch of the model. This model is henceforth referred to as Multivariate Temporal Autoencoder (MvTAe). The framework in this paper utilizes a synthetic multivariate temporal dataset which contains dimensions that combine to create a hidden output target.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)