Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Neural Network MCMC sampler that maximizes Proposal Entropy (2010.03587v1)

Published 7 Oct 2020 in stat.ML, cs.LG, and stat.ME

Abstract: Markov Chain Monte Carlo (MCMC) methods sample from unnormalized probability distributions and offer guarantees of exact sampling. However, in the continuous case, unfavorable geometry of the target distribution can greatly limit the efficiency of MCMC methods. Augmenting samplers with neural networks can potentially improve their efficiency. Previous neural network based samplers were trained with objectives that either did not explicitly encourage exploration, or used a L2 jump objective which could only be applied to well structured distributions. Thus it seems promising to instead maximize the proposal entropy for adapting the proposal to distributions of any shape. To allow direct optimization of the proposal entropy, we propose a neural network MCMC sampler that has a flexible and tractable proposal distribution. Specifically, our network architecture utilizes the gradient of the target distribution for generating proposals. Our model achieves significantly higher efficiency than previous neural network MCMC techniques in a variety of sampling tasks. Further, the sampler is applied on training of a convergent energy-based model of natural images. The adaptive sampler achieves unbiased sampling with significantly higher proposal entropy than Langevin dynamics sampler.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zengyi Li (7 papers)
  2. Yubei Chen (32 papers)
  3. Friedrich T. Sommer (36 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.