Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Abductive Knowledge Induction From Raw Data (2010.03514v2)

Published 7 Oct 2020 in cs.AI and cs.LG

Abstract: For many reasoning-heavy tasks involving raw inputs, it is challenging to design an appropriate end-to-end learning pipeline. Neuro-Symbolic Learning, divide the process into sub-symbolic perception and symbolic reasoning, trying to utilise data-driven machine learning and knowledge-driven reasoning simultaneously. However, they suffer from the exponential computational complexity within the interface between these two components, where the sub-symbolic learning model lacks direct supervision, and the symbolic model lacks accurate input facts. Hence, most of them assume the existence of a strong symbolic knowledge base and only learn the perception model while avoiding a crucial problem: where does the knowledge come from? In this paper, we present Abductive Meta-Interpretive Learning ($Meta_{Abd}$) that unites abduction and induction to learn neural networks and induce logic theories jointly from raw data. Experimental results demonstrate that $Meta_{Abd}$ not only outperforms the compared systems in predictive accuracy and data efficiency but also induces logic programs that can be re-used as background knowledge in subsequent learning tasks. To the best of our knowledge, $Meta_{Abd}$ is the first system that can jointly learn neural networks from scratch and induce recursive first-order logic theories with predicate invention.

Citations (44)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.