Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Knowledge-Based Learning of Nonlinear Dynamics and Chaos (2010.03415v4)

Published 7 Oct 2020 in nlin.CD and cs.LG

Abstract: Extracting predictive models from nonlinear systems is a central task in scientific machine learning. One key problem is the reconciliation between modern data-driven approaches and first principles. Despite rapid advances in machine learning techniques, embedding domain knowledge into data-driven models remains a challenge. In this work, we present a universal learning framework for extracting predictive models from nonlinear systems based on observations. Our framework can readily incorporate first principle knowledge because it naturally models nonlinear systems as continuous-time systems. This both improves the extracted models' extrapolation power and reduces the amount of data needed for training. In addition, our framework has the advantages of robustness to observational noise and applicability to irregularly sampled data. We demonstrate the effectiveness of our scheme by learning predictive models for a wide variety of systems including a stiff Van der Pol oscillator, the Lorenz system, and the Kuramoto-Sivashinsky equation. For the Lorenz system, different types of domain knowledge are incorporated to demonstrate the strength of knowledge embedding in data-driven system identification.

Citations (29)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.