Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neural Networks (2010.03250v3)

Published 7 Oct 2020 in cs.LG and cs.SI

Abstract: In this paper, we propose a novel framework to automatically utilize task-dependent semantic information which is encoded in heterogeneous information networks (HINs). Specifically, we search for a meta graph, which can capture more complex semantic relations than a meta path, to determine how graph neural networks (GNNs) propagate messages along different types of edges. We formalize the problem within the framework of neural architecture search (NAS) and then perform the search in a differentiable manner. We design an expressive search space in the form of a directed acyclic graph (DAG) to represent candidate meta graphs for a HIN, and we propose task-dependent type constraint to filter out those edge types along which message passing has no effect on the representations of nodes that are related to the downstream task. The size of the search space we define is huge, so we further propose a novel and efficient search algorithm to make the total search cost on a par with training a single GNN once. Compared with existing popular NAS algorithms, our proposed search algorithm improves the search efficiency. We conduct extensive experiments on different HINs and downstream tasks to evaluate our method, and experimental results show that our method can outperform state-of-the-art heterogeneous GNNs and also improves efficiency compared with those methods which can implicitly learn meta paths.

Citations (64)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.