Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Robust Framework for Analyzing Gradient-Based Dynamics in Bilinear Games (2010.03211v1)

Published 7 Oct 2020 in math.OC and cs.GT

Abstract: In this work, we establish a frequency-domain framework for analyzing gradient-based algorithms in linear minimax optimization problems; specifically, our approach is based on the Z-transform, a powerful tool applied in Control Theory and Signal Processing in order to characterize linear discrete-time systems. We employ our framework to obtain the first tight analysis of stability of Optimistic Gradient Descent/Ascent (OGDA), a natural variant of Gradient Descent/Ascent that was shown to exhibit last-iterate convergence in bilinear games by Daskalakis et al. \cite{DBLP:journals/corr/abs-1711-00141}. Importantly, our analysis is considerably simpler and more concise than the existing ones. Moreover, building on the intuition of OGDA, we consider a general family of gradient-based algorithms that augment the memory of the optimization through multiple historical steps. We reduce the convergence -- to a saddle-point -- of the dynamics in bilinear games to the stability of a polynomial, for which efficient algorithmic schemes are well-established. As an immediate corollary, we obtain a broad class of algorithms -- that contains OGDA as a special case -- with a last-iterate convergence guarantee to the space of Nash equilibria of the game.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.