Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Calibrating microscopic car following models for adaptive cruise control vehicles: a multi-objective approach (2010.03109v1)

Published 7 Oct 2020 in eess.SY and cs.SY

Abstract: Adaptive cruise control (ACC) vehicles are the first step toward comprehensive vehicle automation. However, the impacts of such vehicles on the underlying traffic flow are not yet clear. Therefore, it is of interest to accurately model vehicle-level dynamics of commercially available ACC vehicles so that they may be used in further modeling efforts to quantify the impact of commercially available ACC vehicles on traffic flow. Importantly, not only model selection but also the calibration approach and error metric used for calibration are critical to accurately model ACC vehicle behavior. In this work, we explore the question of how to calibrate car following models to describe ACC vehicle dynamics. Specifically, we apply a multi-objective calibration approach to understand the tradeoff between calibrating model parameters to minimize speed error vs. spacing error. Three different car-following models are calibrated for data from six vehicles. The results are in line with recent literature and verify that targeting a low spacing error does not compromise the speed accuracy whether the opposite is not true for modeling ACC vehicle dynamics.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube